On combining Learning Vector Quantization and the Bayesian classifiers for natural textured images

نویسندگان

  • María Guijarro
  • Raquel Abreu
  • Gonzalo Pajares
چکیده

One objective for classifying textures in natural images is to achieve the best performance possible. Unsupervised techniques are suitable when no prior knowledge about the image content is available. The main drawback of unsupervised approaches is its worst performance as compared against supervised ones. We propose a new unsupervised hybrid approach based on two welltested classifiers: Vector Quantization (VQ) and Bayesian (BY). The VQ unsupervised method establishes an initial partition which is validated and improved through the supervised BY. A comparative analysis is carried out against classical classifiers, verifying its performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Rejection Strategies for Learning Vector Quantization

Classification with rejection is well understood for classifiers which provide explicit class probabilities. The situation is more complicated for popular deterministic classifiers such as learning vector quantisation schemes: albeit reject options using simple distance-based geometric measures were proposed [4], their local scaling behaviour is unclear for complex problems. Here, we propose a ...

متن کامل

Comparison of 14 different families of classification algorithms on 115 binary datasets

We tested 14 very different classification algorithms (random forest, gradient boosting machines, SVM linear, polynomial, and RBF 1-hidden-layer neural nets, extreme learning machines, k-nearest neighbors and a bagging of knn, naive Bayes, learning vector quantization, elastic net logistic regression, sparse linear discriminant analysis, and a boosting of linear classifiers) on 115 real life bi...

متن کامل

دسته‌بندی پرسش‌ها با استفاده از ترکیب دسته‌بندها

Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The  literature works can be categorized as rule-based and learning...

متن کامل

Detection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine

Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...

متن کامل

A class-modular GLVQ ensemble with outlier learning for handwritten digit recognition

A class-modular generalized learning vector quantization (GLVQ) ensemble method with outlier learning for handwritten digit recognition is proposed. A GLVQ classifier is one of discriminative methods. Though discriminative classifiers have remarkable ability to solve character recognition problems, they are poor at outlier resistance. To overcome this problem, a GLVQ classifier trained with bot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007